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Introduction
   Gravitational Waves are  ripples in space-time produced by the bulk accelerated motion 
of matter. Gravitational Waves were first predicted by Albert Einstein in 1916 as a 
consequence of his work on general relativity. The first indirect observational proof of the 
existence of Gravitational Waves was from a binary pulser PSR1913+16 in 1974 when 
Hulse and Taylor noticed that the time period of the pulser is decreasing. However, now it 
is possible to detect Gravitational Waves directly using Interferometric Gravitational Wave 
Detectors. When GW passes through the detector it causes strain in the detector arms 
and GW detector data records the strain observed at different times. Unfortunately the 
data contains a lot of noise. In most cases the noise is  frequency dependent and non 
stationary and are produced by interactions among detector subsystems or with the 
surrounding environment. Transient noise glitches often originate from complex nonlinear 
couplings between the channels of the detector, thus resulting in very complex time-
frequency morphologies. The characteristics of the noises may also depend on the 
quantum state of the gravitational field. Thus detection of this fundamental noise may 
provide some direct evidence for the quantization of gravity and the existence of 
gravitons. It is easier to visualise these noise morphologies in time-frequency domain 
(Spectrogram) of the data that allows us to select out features at different frequencies, 
and note how they evolve over very short times, without much prior knowledge of the 
signal morphology.

 I have developed a Machine Learning (Convolutional Neural Network) model which can 
classify GW glitches of 22 classes from GW Spectrogram with an accuracy of 
approximately 95% after 3 hours of training. Once a glitch family has been identified, it is 
possible to perform further investigations to establish its origin and prepare custom data 
quality flags in order to reduce their impact on the detector performance. We can also 
detect any GW event very quickly without estimating parameters at first using this 
classification model, since a GW event produces Chirp-like spectrograms. Later we can 
use Matched Filtering for parameter estimation and for confirming the event. However, this 
takes much more time as it involves template banks for cross checking.
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1080 Lines             1400 Ripples      Air compressor            Blip                   Chirp

  Extremely Loud              Helix                    Koi Fish        Light Modulation   Low frequency Burst

Low Frequency Lines     No Glitch           Paired Doves        Power Line       Repeating Blips

Scattered Light          Scratchy                  Tomte                 Violin mode        Wandering Line

Whistle              None of the above
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Methodology

Input Dataset
This model takes labelled spectrogram images 

of different classes as input. I have used a Gravity 
Spy dataset. It contains Train, Validation and Test 
data directory and each of these folder contain 
spectrogram images of different classes. In this 
table we have listed number of input images of 
each classes and corresponding histogram has 
been shown for better visualisation. From the 
histogram for Train Dataset we can say there is 
class imbalance which may lead to greater overall 
loss during validation and testing. 
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Model
This machine learning model consists of three 

convolution operation each of which followed by 
ReLU activation and max pooling layer. These are 
done to downsample the image and extract 
important features. Then this image has been 
flattened followed by two dense layer to get the 
probabilities of the image belongs to each of the 
22 classes. The position of the maximum probable 
number makes the prediction of which type of 
noise does it consists of among the 22 classes. 
Here I have used softmax cross entropy loss as 
cost function.
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 Application of CNN Model

GW Glitch Classification
At first the Train dataset is feed 

into the model. It gives loss and 
accuracy as output. Here loss is 
our metric and minimising the loss 
is our main target. Then we do 
back-propagation to update the 
values of the model parameters. In 
this way we train the model 20 
times and at each step we observe 
the loss and accuracy on the 
Validation set. After 20 epochs the 
trained model is applied on Test 
dataset to obtain test loss and test 
accuracy for each classes. 
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GW Detection
Taking a GW Detector Time-series 

data one can apply Q-transform to 
generate Spectrogram of the data. 
On running this trained model on 
the slices of the spectrogram it is 
possible to predict which type of 
noise does it belongs to. Since GW 
events create Chirp like 
spectrogram, if it finds any Chirp 
like signal observed will be notified. 
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GW detected
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Loss and Accuracy
Here accuracy are given between 

0 and 1 i.e 1 means 100% accuracy. 
After 20 epochs we obtain 
Train accuracy: 0.9956
Validation accuracy: 0.9398
Train loss: 0.02
Validation loss: 0.434
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 Result

Test Loss and Accuracy

Test accuracy: 0.9423
Test loss: 0.522
The accuracy and loss of each 
class of Test Dataset has been 
shown in the Table and 
corresponding histogram. 
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Conclusion
 After 3 hours of training, the model gives overall 

accuracy of 94.23% and loss of 0.522 on Test Dataset. 
This model identify Chirp, 1400 Ripples, Helix, Power Line, 
Scratchy with 100% accuracy and most of the other 
classes with more than 95% accuracy. Those classes 
giving low accuracy is due to very less Train data from that 
class thus, gives relatively high loss. Resampling the Train 
set using data augmentation or adding other new data to 
reduce class imbalance will definitely help in reducing Test 
loss and increasing Test accuracy. From the accuracy vs 
epoch plot for Train and Validation set we can notice 
overfitting. Use of Dropout or other Regularisation 
technique will reduce overfitting effect. Since this model 
recognise the Chirp signal with 100% accuracy, we can 
detect Gravitational Waves from Spectrogram of a GW 
time-series data using this classification model very fast 
with a very good accuracy. 

Due to lack of computational power, I have not been able 
to use deeper model, which may increase Test accuracy. 
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